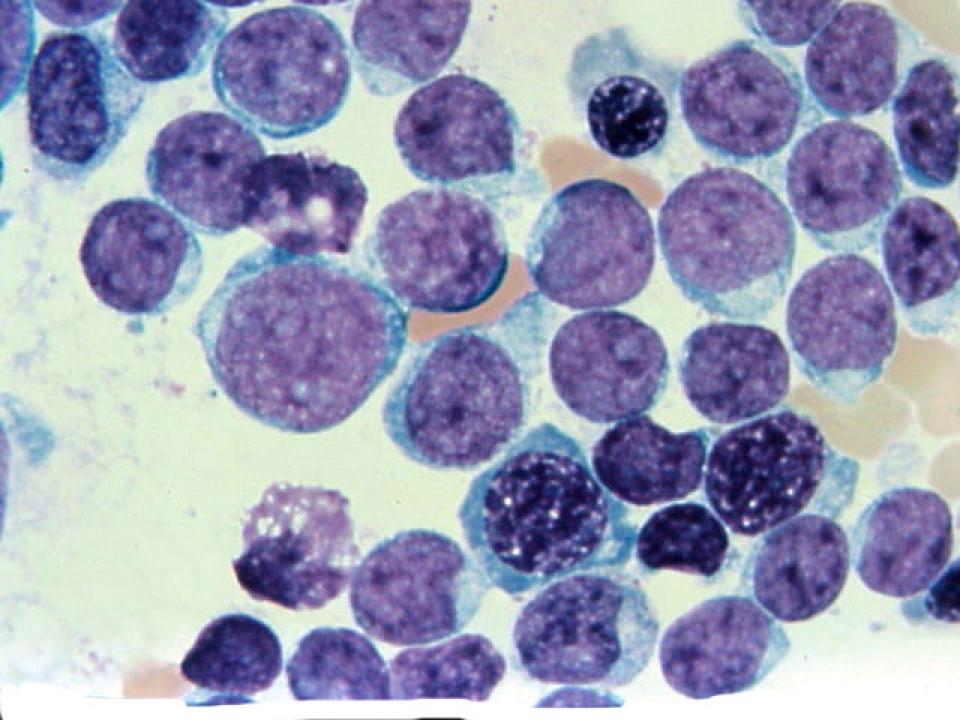
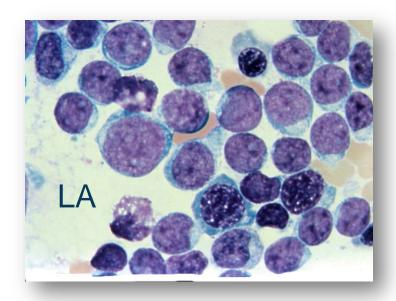
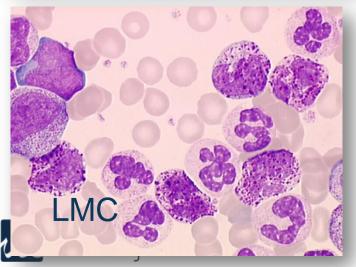


UE N° 9


Cancéro-onco hématologie

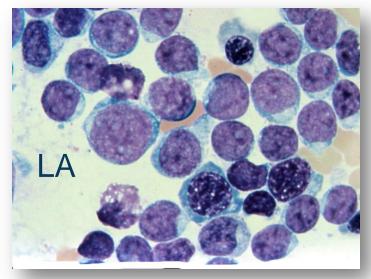
Objectif ECN: N° 312


Diagnostiquer une LEUCEMIE AIGUE


D. Bordessoule

LEUCÉMIE AIGUE

INTRODUCTION ET EPIDEMIOLOGIE

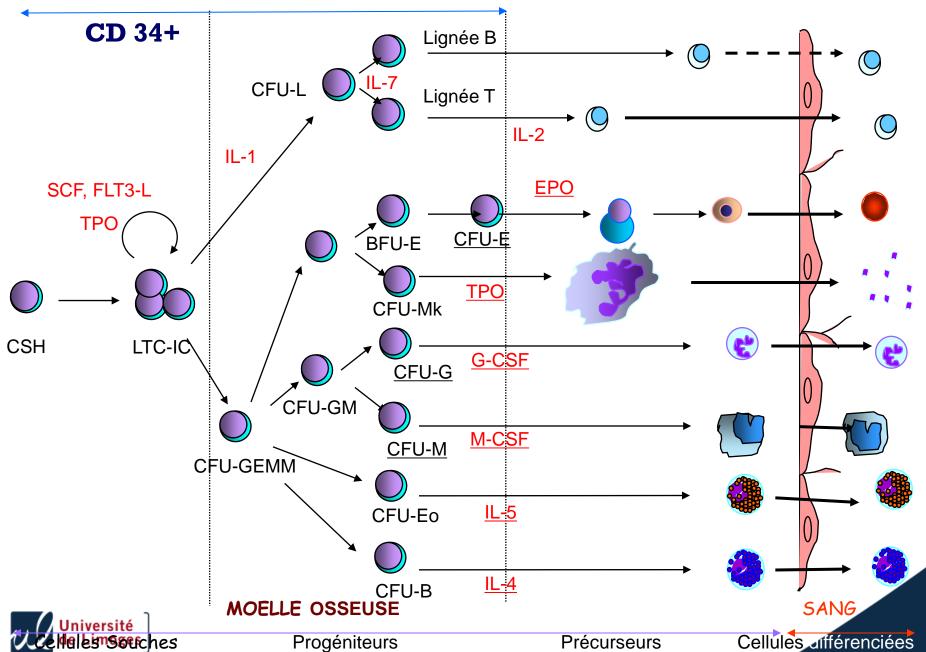

I - DIAGNOSTIC POSITIF

- A Circonstances Révélatrices
- B Diagnostic Clinique
- C Diagnostic biologique

II - FORMES CLINIQUES

- III DIAGNOSTIC DIFFERENTIEL
- IV FACTEURS PRONOSTICS

LEUCÉMIE AIGUE (LA)



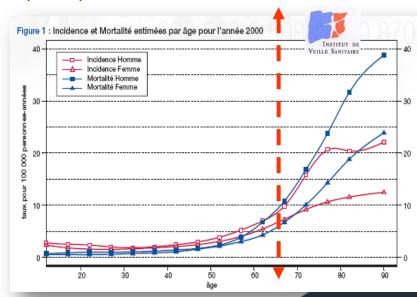
DEFINITION

- Prolifération maligne clonale à point de départ médullaire de cellules immatures et bloquées à un stade précoce de leur différenciation (blastes) de la lignée:
 - Myéloide: LA myéloblastique
 - Lymphoide: LA lymphoblastique.
- Maladie aiguë: urgence thérapeutique

 Evènement transformant pouvant apparaître à n'importe quel stade de maturation => différentes variétés de leucémie aigue

GENERALITES

■ 4 à 5 cas/100000hab/an


■ Epidémiologie des LAL

- 80% des LA chez l'enfant+++
 - ⊠ pic de fréquence entre 2 et 5 ans
 - ⊠ cancer le plus fréquent chez l'enfant
- chez l'adulte> 50ans forme grave avec t(9-22), mBcr-abl+

■ Epidemiologie des LAM

- incidence croissante avec l'âge
- incidence de 3/100 000 habitants/an
 - =>80% **leucémie de l' adulte:** âge moyen 64 ans

GENERALITES

■ Histoire naturelle de la maladie:

- > Evolution explosive: 1mois survie spontanée
- ➤ Forme sub aiguë progressive sur quelques mois
 - => LA secondaires
 - => LA paucileucoblastiques des sujets agés

■ Facteurs favorisants

- ⊠ traitements antérieurs par chimiothérapie ou radiothérapie.
- ⊠ expositions professionnelles: Benzène
- ⊠ prédisposition génétique:
 - trisomie 21, Fanconi, Li Fraumeni(deficit p53)
 - déficit immunitaires Ataxie telangiectasie, Wiskott-Aldrich
 - neurofibromatose de von Recklinghausen
- ⊠ Certains virus : EBV, HTLV1

I- DIAGNOSTIC POSITIF

A - CIRCONSTANCES RÉVÉLATRICES :

- Association plus ou moins complète de 2 mécanismes
 - Prolifération tumorale maligne (clonale)
 - *rainsuffisance hématopoïèse normale (polyclonale)*

- circonstances de découverte :
 - symptomatique car progression très aigue
 - surveillance d'un syndrome myéloprolifératif ou MDS
 - découverte fortuite rare

B – SIGNES CLINIQUES:

1 - Syndrome d'insuffisance médullaire

- Syndrome hémorragique +++:
 - Purpura pétéchial, ecchymotique
 - Hémorragies muqueuses : épistaxis, gingivorragies
 - Hémorragies graves qui met en jeu:
 - => le pronostic fonctionnel (oculaire, sd de Volkman, plexus brachial)
 - => le pronostic vital (hémorragies cérébrales, pulmonaire ou digestives)

Chez adulte

Chez enfant

- > Syndrome anémique : scotomes, acouphénes, vertiges
 - dyspnée d'effort, palpitation
 - fatigue et paleur
- > Syndrome infectieux: angine ulcéronécrotique, sepsis à répétition,
 - pneumopathies, abcés ano-rectaux avec cellulite
 - respective septique septique
 - Recherche d'une porte d'entrée infectieuse

2 - Syndrome tumoral :

→ inconstant, plus tardif = 10¹² cellules leucémiques dans l'organisme

▶ <u>Douleurs osseuses :</u>

- SYMPTOME MAJEUR chez l'enfant ++++

- allure pseudo-rhumatismales

métaphysaires, nocturnes

réveillées par la pression des os

(sternum, côtes)

Rx: "bandes claires » chez l'enfant

- chez l'adulte rare sauf

chlorome : tumeur ostéolytique verte

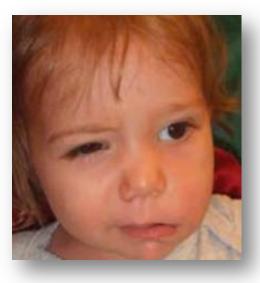
- > Splénomégalie :
 - absente ou modérée+++ mais splénalgies
- ➤ Adénopathies dans les LAL
- **≻ Hépatomégalie** + rares

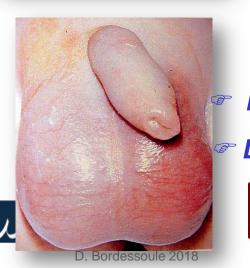
plats

> Autres localisations:

meuro-méningées

- * méningites leucémiques
- * paralysie des nerfs crâniens
 - oculomoteurs (diplopie)
 - branche supérieure du VII
 - branche inférieure du V


(hypoesthésie de la houppe du n



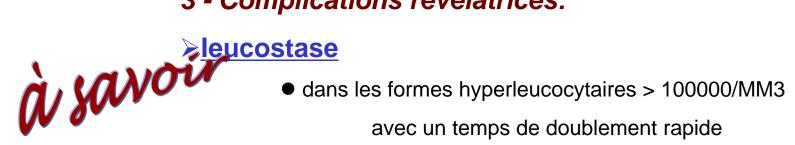
Médiastin compressif (LALT)

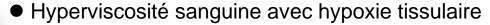
LAL Amygdaliennes et gonadiques: testis+++ / ovaire

palpation systématique des testicules+++

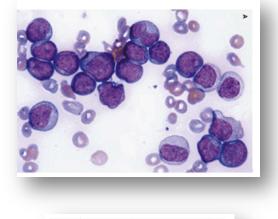
taches rosées violacées

érythrodermie diffuse ou papules *© gingivales (M4)*

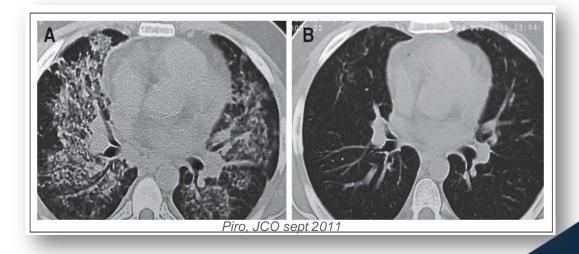

Chloromes (LAM)



3 - Complications révélatrices:

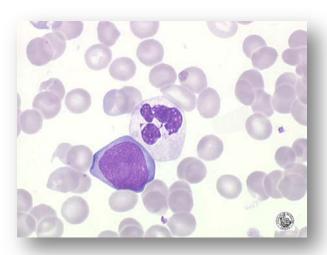

cérébrale: coma hypoxique

pulmonaire = détresse respiratoire de type OAP


hépatique

URGENCE thérapeutique

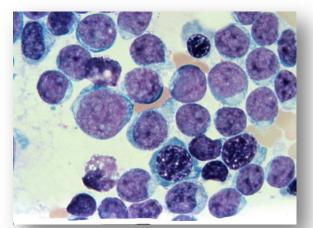
ne pas transfuser avant la chimiothérapie

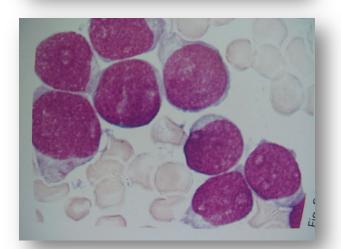


C - DIAGNOSTIC BIOLOGIQUE :

1 – <u>NFS</u>

forme typique évoque le diagnostic :


- anémie normochrome, normocytaire, arégénérative
- thrombopénie +/- (< 50 000/mm³ : risques hémorragiques)
- neutropénie < 500/mm³
- leucocytose souvent très élevée chez l'adulte jeune
 - hyperleucocytose > 30 000 à 500 000/mm³
 - + blastose circulante avec hiatus leucémique.
- forme moins typique:
 - ° pancytopénie sans blastose circulante
 - ° cytopénie isolée


faire un myélogramme systématiquement devant une cytopel sans étiologie

2 - MYÉLOGRAMME

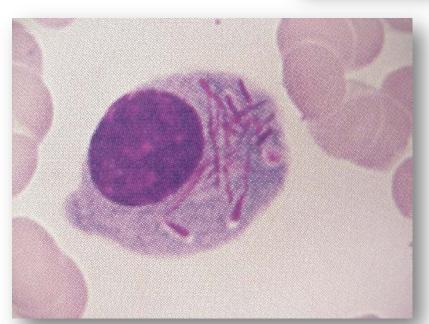
affirme le diagnostic :

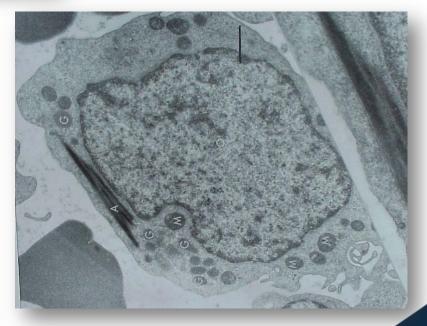
1- moelle riche

 2 - diminution des lignées hématopoïétiques normales ou lignée blanche dysmorphique

3 - envahissement de blastes > 20 %

à la coloration de May-Grünwald-Giemsa


des cellules jeunes à chromatine fine
nucléoles +++


cytoplasme +/- abondant
avec des granulations + corps d'Auer LAM
Sans granulations ni cpsa auer LAL

LAM: corps d'Auer

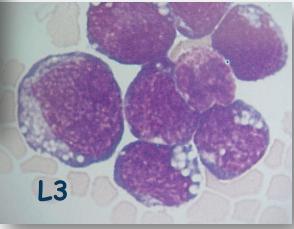
Université de Limoges LAM3 avec des corps d'Auer en fagots

> typage des blastes LAL

cytologique => classification FAB

LAL1 (enfant): petits lymphoblastes homogénes


LAL2 (adulte): grands lymphoblastes hétérogènes


LAL3 (trés basophile de type Burkitt-like)

cytoplasmique:

* cytochimique : myéloperoxydases négatives

=> élimine les LAM

typage des blastes LAL

Différence Pour ceux qui veulent en savoir plus Ag membranaires B (CD19, CD 20, CD22)

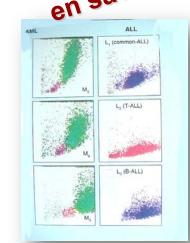
* Ag membranaires T (CD2) membranaire par Ac monoclonaux dirigés contre les

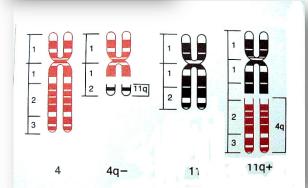
* Ag membranaires T (CD7, CD2, CD3, CD4, CD8)

* Ag commun des LAL ou CALLA (CD10)

* TdT (terminal déoxy-nucléotidyl-transférase) DNA polymérase spécifique lymphoïde

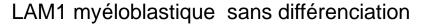
* anomalies qualitatives:


• t (9;22) : LAL > 50 ans


• **t (4;11)**, t(11;14), t (1;19)

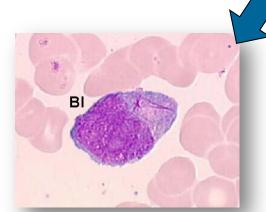
• **t (8;14)**, t (2;8), t (8;22) : LAL3

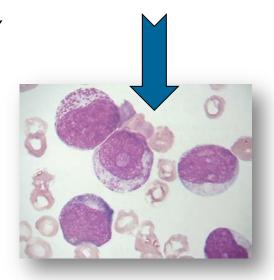
* anomalies quantitatives :

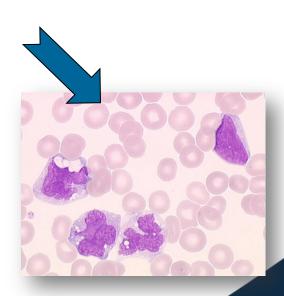

hyperdiploïdes PN > hypodiploïdes

typage des blastes LAM

cytologique => classification FAB




LAM2 myéloblastique + différenciation myéloïde


LAM3 promyélocytaire

LAM4 myélomonocytaire

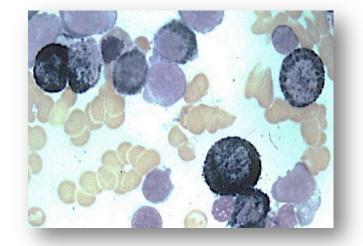
LAM5 monoblastique

> typage des blastes LAM

<u>cytologique</u> => classification FAB:

LAM2 myéloblastique + différenciation myéloïde

LAM3 promyélocytaire

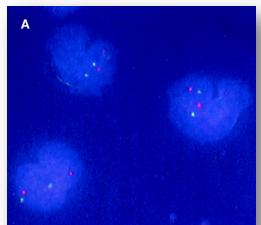

LAM4 myélomonocytaire

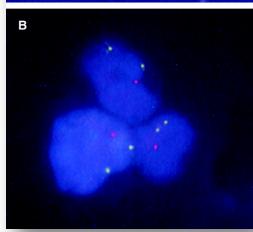
LAM5 monoblastique

LAM6 érythroleucémie

LAM7 leucémie à mégacaryoblastes

LAM inclassables ou multiphénotypiques (10%)


<u>cytoplasmique:</u> => cytochimique :


myéloperoxydases + => élimine les LAL

estérases+ inhibables par Fluorure de Na => LAM5

Pour ceux qui veulent en savoir plus

- membranaire par Ac monoclonaux dirigés contre
 - ➢ les Ag membranaires cellules souches (CD34)
- ➤ les Ag membranaires myéloides (CD33,CD13, CD16)

nucléaire nucléaire

- <u>cytogénétique</u> anomalies qualitatives:
 - t(8;21) : LAM2 éosinophile
 - t (15;17): LAM3
 - inv du 16
 - t (9;11) ou 11q23: LAM4/5
 - t (9;22)/ TA de LMC
 - del 5q-/monosomie 7 : TA de MDS
- biologie moléculaire NPM, Flt3 +++ etc ou par FISH (tumorothèque)
 - => facteurs pronostics et suivi

D - BILAN à visée pré-thérapeutique

a) Coagulation

- hémostase complète à la recherche de CIVD +++
- rinitiale ou majorée par la lyse

- caractérisée par :
 - une baisse des plaquettes
 et des facteurs consommables :fibrinogène, V, VIII.
 - > augmentation PDF et complexes solubles

b) Bilan métabolique :

- hyperuricémie sg + U
- rénal: potassium et risque d'insuffisance rénale aiguë

- respectique,

c) Bactériologie :

- hémocultures et prélèvements bactériologiques systématiques si température > 38° 5C.
- si patient apyrétique : carte bactériologique avec culture de saprophytes :gorge, crachats, selles, urines, vagin.
- panoramique dentaire et extractions des dents suspectes
- radiographie pulmonaire

d) Bilan immuno-hématologique pré-transfusionnel :

- groupe ABO, phénotype érythrocytaire étendu
- RAI
- sérologies virales prétansfusionnelles (HIV,HVC, HVB)
- groupage HLA patient et famille

e) Evaluation de l'état général: tolérance de la chimiothérapie?

- Évaluation cardiaque: échographie ou fraction d'éjection systolique (anthracyclines sont cardiotoxiques)
- Évaluation des comorbidités
- Évaluation gériatrique chez les sujets agés)

E- CRITERES d'URGENCE THERAPEUTIQUE +++

Critères de gravité devant conduire à une thérapeutique urgente

- > Syndrome hémorragique cutané ou muqueux +++++

 thrombopénie et CIVD
- Choc septique Fièvre avec agranulocytose
- > Leucostase

Détresse respiratoire Troubles de la conscience

> Troubles métaboliques:

hyperuricémie hyper kaliémie acidose métabolique hyperphosphorémie hypo calcémie insuffisance rénale.

II- FORMES CLINIQUES

Pour ceux qui veulent en savoir plus

1) LAL selon l'âge:

- LAL est la forme la plus fréquente des LA de l'enfant /adulte jeune à tout âge, il peut exister des LAM
- les LAL de l'enfant et de l'adulte sont différentes:
 - enfant: LAL 1 les plus fréquentes
 - adulte: 20% des LA sont des LAL2
 dont >30% avec chromosome Philadelphie
- rares aux 2 extrêmes de la vie: LA Mo

⇒ LAL de l'enfant / adulte jeune

- Clinique : tumorales +++ atteintes méningées, testis
- Typage des blastes:
 - Cytologie : pas de corps d'Auer
 - Cytochimie : MPO ; estérase + non inhibables par le fluorure de Na
 - Immunologie :3 formes:
- LAL commune : Calla +(CD10) B-, T-

meilleur pronostic => 75 % forme de l'enfant

LAL pré-T : Calla -, B-, T+

- > garçon
- ➤ médiastin +++, + sd tumoral +++
- > hyperleucocytaire
- > T car noyaux convolutés et CD2+,CD5+,CD7 +
 - > forme de mauvais pronostic
 - > 20 % des LAL de l'enfant

F LAL B : Calla -, B+, T-

- ➤ atteinte rétropéritonéale +++
- > Localisation neurologique
- > cyto: Burkitt-Like et CD 19 et Iglo S +
- > t (8;14) ou autres
- ➤ formes gravissimes => meilleur PN +++
- > rare: 2 à 3 % LA de l'enfant

2) Formes cliniques des LAM

2-1) <u>Selon l'âge</u>:

- **adulte:** LAM (80%)
- refant: LAL les LAM sont moins fréquentes
- 2 extrêmes de la vie: LA M4/5
- sujet âgé

LAM pancytopénique proche des LAM

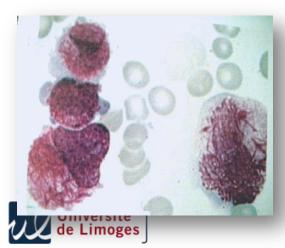
secondaires

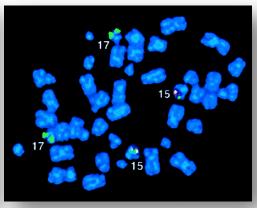
cyto: moelle pauvre

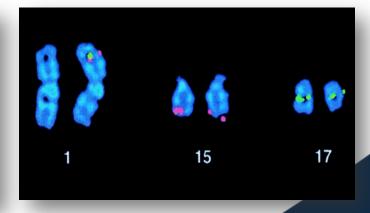
présence de cps d'Auer


formes graves: car mortalité toxique à l'induction

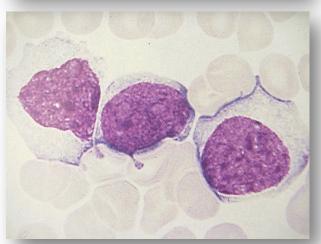
5%→25 à30%




2-2) Selon la cytologie


EXAM 3

- > manifestations hémorragiques +++
- > cytologie : M3
 - très granuleuses
 - corps d'Auer en fagots
 - hypogranuleuses
- cytogénétique: t(15-17)
- > mauvais pronostic : risque hémorragique



LA monoblastique

> fréquence nourrissons

sujets > 80 ans

> tumorale gingivale

cutanée

méningée

- hyperleucocytaire +++
- cyto:M4/M5, esterases inhibables +
- > tubulopathie au lysosyme
- mauvais pronostic

- 3) Formes selon la masse tumorale :
- formes tumorales hyper leucocytaires
- syndrome de lyse +++ spontané
 - **▶risque d'aggravation massive lors du début du traitement** justifiant d'une pré-phase par des corticoïdes progressifs

LAL

> signes biologiques à rechercher systématiquement si hyperleurocytaire W Sang

- acidose
- hyper phosphorémie
- hyper uricémie
- hyper kaliémie
- CIVD

S RISQUE INSUFFISANCE RENALE AIGUE

formes hypoplasiques sont très rares ches les sujets jeunes

D. Bordessoule 2018

Suiets agés

II- DIAGNOSTIC DIFFERENTIEL

1)Chez l'enfant

- ♦ douleurs osseuses = RAA +++
- sangines = MNI

- NFS
- sérologie EBV
- 🔖 envahissement médullaire par des métastases
 - sympathoblastome, neuroblastome
 - dysembryome testis
 - lymphome

Myélogramme

2) Chez l'adulte

- aplasie médullaire
 - LA avec pancytopénie aleucémique à mo pauvre
 - mais faible % blastes FAIRE BM
- 🔖 transformation aigue d'un SMP ou d'une MDS de type AREB2

IV - FACTEURS PRONOSTIQUES (PN)

- i <u>age</u>
 2 <u>syndrome tumoral</u> +++
 3 localisotic

 - 3 localisation neuroméningée
 - 4 *leucocytose* > 40 000/mm³
 - 5 type cytologique défavorable:
 - La inclassables < LAM < LAL</p>
 - □ LAM4/M5 < LAM1/LAM2
 </p>
 - LAL2 < LAL1 < LAL3 LAL Calla B ou T < Calla+B- T-

6 – Cytogénétique et biologie moléculaire (BM)

- LAM * favorable CG: t(15-17), inv 16, t (8,21) BM NPM+
 - défavorable: CG complexe, del 5/7 BM Flt3 ITD
- **LAL** * favorable: t(9,11) t(8,14) = LAL3, hyperdiploides
 - défavorable: t(4,11); t(9,22), Hypodiploides

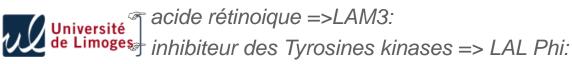
7- réponse initiale à la chimiothérapie

RC2 < RC1

(plus d'1 cure de chimiothérapie pour obtenir la RC)

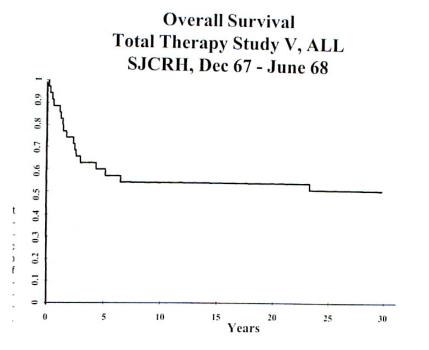
PRINCIPES THERAPEUTIQUES des LA

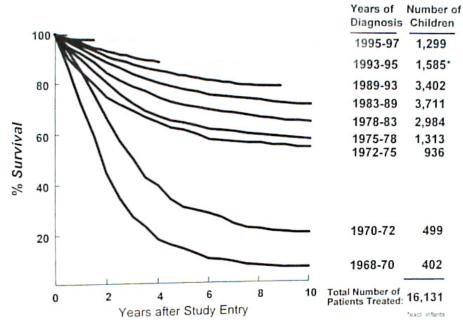
Objectif curatif


- 1 Obtenir la rémission complèteNFS normale et <5% dans la moelle
- 2 Prévenir la rechute

MOYENS THERAPEUTIQUES

- <u>Chimiothérapie</u> (induction, consolidation, entretien)
 anthracyclines et aracytine (LAM
 Vincristine, asparaginase, MTX, corticoides (LAL)
- Radiothérapie neuroméningé en prévention d'une rechute
 LAL et LAMonoblastique
- Greffe de cellules souches hématopoiétiques


LA en RC + donneur HLA compatible/identique


- + facteurs de risque de rechute + age et état clinique compatible
- Thérapeutiques ciblées

LAL Pour ceux qui veulent en savoir plus

Survival of CCG Patients with Acute Lymphoblastic Leukemia, 1968-1997

■ Résultats:

- LAL enfant RC 90% guérison 70%
- LAL adulte RC 80% guérison de 30 à 50%
- LAM adute RC 80%<60ans vs 50%> guérison 25 à 50%

A titre indicatif PN des LAM selon la CG méta-analyse

B. Loewenberg, NEJMed 2009

LAM CG normale 50%

Idem pour les pertes du X /Y

OS 4ans: 41%

LAM CG anormale 50%:

anomalie CBF(13%):

6% inv(16)

OS 4ans = 70 %

7% t (8;21)

OS 4ans = 63 %

anomalie non CBF(37%)

OS 4ans = 21 %

monosomie autosomale:

1 monosomie: OS à 12 %

2 monosomies et plus OS 3%

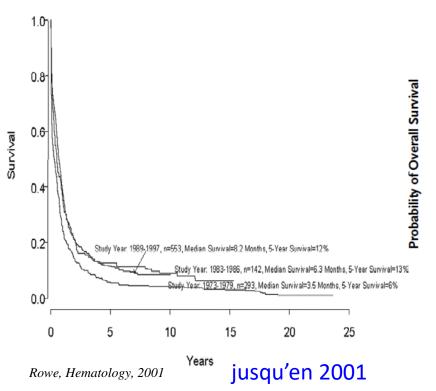
• CG anormalies de structures

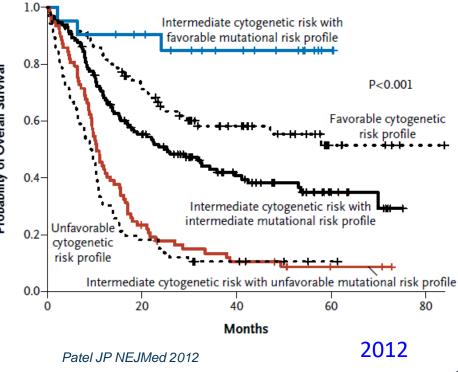
- 1 anomalie OS à 24 %
- 2 anomalies OS à 11 %

CG complexe

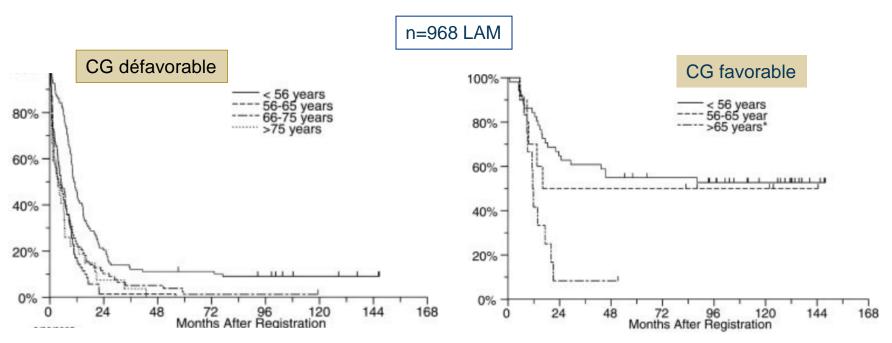
- sans monosomie OS à 25%
- monosomie OS à 7 %

Pour ceux qui veulent en savoir plus


LAM Classification *révisée* des facteurs de risques CG *et moléculaire*


A Revised Risk Stratification

Cytogenetic Classification	Mutations		Overall Risk Profile
Favorable	Any		Favorable
Normal karyo- type or inter- mediate-risk ctyogenetic lesions	FLT3-ITD-negative	Mutant NPM1 and IDH1 or IDH2	
	FLT3-ITD-negative	Wild-type ASXL1, MLL-PTD, PHF6, and TET2	Intermediate
	FLT3-ITD- negative or positive	Mutant CEBPA	
	FLT3-ITD-positive	Wild-type MLL-PTD, TET2, and DNMT3A and trisomy 8-negative	
	FLT3-ITD-negative	Mutant TET2, MLL-PTD, ASXL1, or PHF6	
	FLT3-ITD-positive	Mutant TET2, MLL-PTD, DNMT3A, or trisomy 8, without mutant CEBPA	Unfavorable
Unfavorable	Any		


LAM courbes de survie en population générale

LAM des SA plus graves

Figure 2. OS by age for patients with unfavorable risk cytogenetics. Patients younger than 56 years (n=108) had a median survival of 11 months, patients aged 56 to 65 years (n=70) had a median survival of 5 months, and patients aged 66 to 75 years (n=78) had a median survival of 4 months, as did the 27 patients older than 75 years.

Figure 4. OS by age for patients with favorable risk cytogenetics. The median overall survival for patients younger than age 56 (n = 51) and those aged 56 to 65 (n = 10) has not been reached, while the median survival for those older than age 65 (n = 12) was 12 months.

Appelbaum, Blood 2006

